The frontal aslant tract (FAT) is a white-matter tract connecting the inferior frontal gyrus (IFG) and the supplementary motor complex (SMC). Damage to either component of the network causes spontaneous speech dysfluency, indicating its critical role in language production. However, spontaneous speech dysfluency may stem from various lower-level linguistic deficits, precluding inferences about the nature of linguistic processing subserved by the IFG-SMC network. Since the IFG and the SMC are attributed a role in conceptual and lexical selection during language production, we hypothesized that these processes rely on the IFG-SMC connectivity via the FAT. We analysed the effects of FAT volume on conceptual and lexical selection measures following frontal lobe stroke. The measures were obtained from the sentence completion task, tapping into conceptual and lexical selection, and the picture-word interference task, providing a more specific measure of lexical selection. Lower FAT volume was not associated with lower conceptual or lexical selection abilities in our patient cohort. Current findings stand in marked discrepancy with previous lesion and neuroimaging evidence for the joint contribution of the IFG and the SMC to lexical and conceptual selection. A plausible explanation reconciling this discrepancy is that the IFG-SMC connectivity via the FAT does contribute to conceptual and/or lexical selection but its disrupted function undergoes reorganisation over the course of post-stroke recovery. Thus, our negative findings stress the importance of testing the causal role of the FAT in lexical and conceptual selection in patients with more acute frontal lobe lesions.
Keywords: Conceptual preparation; Frontal aslant tract; Lexical selection; Picture-word interference; Sentence completion; White-matter tracts.
Copyright © 2020 Elsevier Ltd. All rights reserved.