Graphene nanoparticles are increasingly released into the aquatic environment with the growth of production. However, there are rare investigations focusing on the interaction of nanoparticles with other contaminants. Triphenyl phosphate (TPP) is a frequently detected organophosphate flame retardant in the environment. This study aimed to assess the joint effects of graphene and TPP on Mytilus galloprovincialis hemocytes. Oxidative stress could be induced by graphene and TPP in mussel hemocytes, which could further cause apoptosis, DNA damage and decrease in the lysosomal membrane stability (LMS). Moreover, hemocytes could internalize graphene, thereby resulting in oxidative stress. The oxidative stress and DNA damage in hemocytes were increased in the graphene-exposed group, but significantly reduced after combined exposure of graphene and TPP. The up-regulated genes, including NF-κB, Bcl-2 and Ras, were mainly associated with reduced apoptosis and DNA damage after co-exposure to graphene and TPP.
Keywords: Graphene; Hemocytes; Immunity; Joint effects; Triphenyl phosphate (TPP).
Copyright © 2020 Elsevier Ltd. All rights reserved.