L-asparaginase (E.C.3.5.1.1) is an important enzyme that has been purified and characterized for over decades to study and evaluate its anti-carcinogenic activity against different lymphoproliferative disorders such as acute lymphoblastic leukemia (ALL) and Hodgkin's lymphoma. The ability of the enzyme to convert L-asparagine into aspartic acid and ammonia is the reason behind its anti-cancerous activity. Apart from its medicinal uses, it is widely used in food industry to tackle acrylamide, a probable human carcinogen and, production in carbohydrate-rich foods cooked at high temperatures. There are variety of organisms including microorganisms such as bacteria, fungi, algae, and plants that produce L-asparaginase. The enzyme obtained from different microbial and plant sources have different physiochemical properties and kinetic parameters. L-asparaginases have an optimum pH range between 6 and 10 and an optimum temperature between 37 and 85 °C. This article has reviewed the lowest molecular mass for L-asparaginase in Yersinia pseudotuberculosis Q66CJ2 which is 36.27 kDa, while the highest for Pseudomonas otitidis which has a molecular mass of 205 ± 3 kDa. This review is an attempt to summarize most of the available sources, their phylogenetic relationships, purification methods, data regarding different physiochemical and kinetic properties of L-asparaginase.
Keywords: Acrylamide; Asparagine; Biosensor; Biosynthesis; Chromatography; Hodgkin’s lymphoma; Lymphoblastic leukemia; Millard reaction; Phylogenetic tree.