A rapid blood-based diagnostic modality to detect pancreatic ductal adenocarcinoma (PDAC) with high accuracy is an unmet medical need. The study aimed to validate a unique diagnosis system using Probe Electrospray Ionization Mass Spectrometry (PESI-MS) and Machine Learning to the diagnosis of PDAC. Peripheral blood samples were collected from a total of 322 consecutive PDAC patients and 265 controls with a family history of PDAC. Five µl of serum samples were analyzed using PESI-MS system. The mass spectra from each specimen were then fed into machine learning algorithms to discriminate between control and cancer cases. A total of 587 serum samples were analyzed. The sensitivity of the machine learning algorithm using PESI-MS profiles to identify PDAC is 90.8% with specificity of 91.7% (95% CI 83.9%-97.4% and 82.8%-97.7% respectively). Combined PESI-MS profiles with age and CA19-9 as predictors, the accuracy for stage 1 or 2 of PDAC is 92.9% and for stage 3 or 4 is 93% (95% CI 86.3-98.2; 87.9-97.4 respectively). The accuracy and simplicity of the PESI-MS profiles combined with machine learning provide an opportunity to detect PDAC at an early stage and must be applicable to the examination of at-risk populations.
Keywords: Probe electrospray ionization mass spectrometry (PESI-MS); machine learning; pancreatic ductal adenocarcinoma (PDAC).
AJTR Copyright © 2020.