Development and characterization of pellets for targeted delivery of 5-fluorouracil and phytic acid for treatment of colon cancer in Wistar rat

Heliyon. 2020 Jan 30;6(1):e03125. doi: 10.1016/j.heliyon.2019.e03125. eCollection 2020 Jan.

Abstract

The present study was designed to investigate the therapeutic efficacy of metal chelator and anticancer drug in the treatment of colorectal cancer (CRC). Pellets containing Phytic acid, 5- Fluorouracil (5-FU), Microcrystalline cellulose (MCC) PH 101, Hydroxypropyl Methylcellulose (HPMC) and Barium sulfate were prepared by using extrusion spheronization technique. Prepared pellets were coated with Eudragit S100 to achieve colon-specific drug delivery. Pellets were characterized for various pharmaceutical and micromeritic attributes. The in vivo therapeutic efficacy comprising of both pharmacokinetic and pharmacodynamic parameters was determined in Ehrlich ascites carcinoma (EAC) induced cancer animal model. Phytic acid and 5-FU combinations seem to exert higher cytotoxic activity via increased reactive oxygen species (ROS) level by chelating manganese. Further pharmacokinetic studies reveled approximately 50% lower Cmax in the finished formulation, indicates lower systemic exposure to the drug. X-ray radiography ensures the localized delivery of the encapsulated drug. Histopathological studies indicated no significant local toxicity compared to the uncoated formulation. Results inferred that the proposed combination has superior anticancer activity with minimum systemic and local toxicity and it opens a new avenue in the treatment of colorectal cancer.

Keywords: 5-flurouracil; Colon cancer; Controlled drug delivery; Materials science; Pellets; Pharmaceutical science; Phytic acid.