Background: Deep learning-based computer-aided diagnosis (CAD) is an important method in aiding diagnosis for radiologists. We investigated the accuracy of a deep learning-based CAD in classifying breast lesions with different histological types.
Methods: A total of 448 breast lesions were detected on ultrasound (US) and classified by an experienced radiologist, a resident and deep learning-based CAD respectively. The pathological results of the lesions were chosen as the golden standard. The diagnostic performances of the three raters in different pathological types were analyzed.
Results: For the overall diagnostic performance, deep learning-based CAD presented a significantly higher specificity (76.96%) compared with the two radiologists. The area under ROC of CAD was almost equal with the experienced radiologist (0.81 vs. 0.81), while significantly higher than the resident (0.81 vs. 0.70, P<0.0001). In the benign lesions, deep learning-based CAD had a higher accuracy than both the two radiologists, which correctly classified as benign lesions in 119/135 of fibroadenomas (88.1%), 25/35 of adenosis (71.4%), 14/27 of intraductal papillary tumors (51.9%), 5/10 of inflammation (50%), and 4/8 of sclerosing adenosis (50%). But only the differences between CAD and the two radiologists in fibroadenomas had statistical significance (P=0.0011 and P=0.0313), and the differences between CAD and the resident in adenosis had statistical significance (P=0.012). In the malignant lesions, 151/168 of invasive ductal carcinomas (89.9%), 21/29 of ductal carcinoma in situ (DCIS) (72.4%) and 6/7 of invasive lobular carcinomas (85.7%) were diagnosed as malignancies by deep learning-based CAD, with no significant differences between CAD and the two radiologists.
Conclusions: In the diagnosis of these common types of breast lesions, deep learning-based CAD had a satisfying performance. Deep learning-based CAD had a better performance in the breast benign lesions, especially in fibroadenomas and adenosis. Therefore, deep learning-based CAD is a promising supplemental tool to US to increase the specificity and avoid unnecessary benign biopsies.
Keywords: Deep learning; breast; diagnosis, computer-aided; pathology; ultrasound (US).
2019 Journal of Thoracic Disease. All rights reserved.