In this study, we fabricated poly (methyl methacrylate) (PMMA) microcellular foams featuring tunable cellular structures and porosity, through adjusting the supercritical CO2 foaming conditions. Experimental testing and finite element model (FEM) simulations were conducted to systematically elucidate the influence of the foaming parameters and structure on compressive properties of the foam. The correlation between the cellular structure and mechanical properties was acquired by separating the effects of the cell size and foam porosity. It was found that cell size reduction contributes to improved mechanical properties, which can be attributed to the dispersion of stress and decreasing stress concentration.
Keywords: cell Structure; compressive property; finite element analysis; microcellular foams.