Objective: A new computer tool is proposed to distinguish between focal nodular hyperplasia (FNH) and an inflammatory hepatocellular adenoma (I-HCA) using contrast-enhanced ultrasound (CEUS). The new method was compared with the usual qualitative analysis.
Methods: The proposed tool embeds an "optical flow" algorithm, designed to mimic the human visual perception of object transport in image series, to quantitatively analyse apparent microbubble transport parameters visible on CEUS. Qualitative (visual) and quantitative (computer-assisted) CEUS data were compared in a cohort of adult patients with either FNH or I-HCA based on pathological and radiological results. For quantitative analysis, several computer-assisted classification models were tested and subjected to cross-validation. The accuracies, area under the receiver-operating characteristic curve (AUROC), sensitivity and specificity, positive predictive values (PPVs), negative predictive values (NPVs), false predictive rate (FPRs) and false negative rate (FNRs) were recorded.
Results: Forty-six patients with FNH (n = 29) or I-HCA (n = 17) with 47 tumours (one patient with 2 I-HCA) were analysed. The qualitative diagnostic parameters were accuracy = 93.6%, AUROC = 0.94, sensitivity = 94.4%, specificity = 93.1%, PPV = 89.5%, NPV = 96.4%, FPR = 6.9% and FNR = 5.6%. The quantitative diagnostic parameters were accuracy = 95.9%, AUROC = 0.97, sensitivity = 93.4%, specificity = 97.6%, PPV = 95.3%, NPV = 96.7%, FPR = 2.4% and FNR = 6.6%.
Conclusions: Microbubble transport patterns evident on CEUS are valuable diagnostic indicators. Machine-learning algorithms analysing such data facilitate the diagnosis of FNH and I-HCA tumours.
Key points: • Distinguishing between focal nodular hyperplasia and an inflammatory hepatocellular adenoma using dynamic contrast-enhanced ultrasound is sometimes difficult. • Microbubble transport patterns evident on contrast-enhanced sonography are valuable diagnostic indicators. • Machine-learning algorithms analysing microbubble transport patterns facilitate the diagnosis of FNH and I-HCA.
Keywords: Adenoma; Computer-assisted diagnosis; Perfusion imaging; Retrospective studies; Ultrasound imaging.