Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts

Nucleic Acids Res. 2020 Mar 18;48(5):2232-2245. doi: 10.1093/nar/gkaa036.

Abstract

DNA trinucleotide repeats (TRs) can exhibit dynamic expansions by integer numbers of trinucleotides that lead to neurodegenerative disorders. Strand slipped hairpins during DNA replication, repair and/or recombination may contribute to TR expansion. Here, we combine single-molecule FRET experiments and molecular dynamics studies to elucidate slipping dynamics and conformations of (CAG)n TR hairpins. We directly resolve slipping by predominantly two CAG units. The slipping kinetics depends on the even/odd repeat parity. The populated states suggest greater stability for 5'-AGCA-3' tetraloops, compared with alternative 5'-CAG-3' triloops. To accommodate the tetraloop, even(odd)-numbered repeats have an even(odd) number of hanging bases in the hairpin stem. In particular, a paired-end tetraloop (no hanging TR) is stable in (CAG)n = even, but such situation cannot occur in (CAG)n = odd, where the hairpin is "frustrated'' and slips back and forth between states with one TR hanging at the 5' or 3' end. Trinucleotide interrupts in the repeating CAG pattern associated with altered disease phenotypes select for specific conformers with favorable loop sequences. Molecular dynamics provide atomic-level insight into the loop configurations. Reducing strand slipping in TR hairpins by sequence interruptions at the loop suggests disease-associated variations impact expansion mechanisms at the level of slipped hairpins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Pairing
  • DNA / chemistry*
  • Fluorescence Resonance Energy Transfer
  • Inverted Repeat Sequences*
  • Kinetics
  • Molecular Dynamics Simulation
  • Nucleic Acid Conformation
  • Single Molecule Imaging
  • Thermodynamics
  • Trinucleotide Repeats*

Substances

  • DNA