PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons inside and outside a primary school classroom in Beijing: Concentration, composition, and inhalation cancer risk

Sci Total Environ. 2020 Feb 25:705:135840. doi: 10.1016/j.scitotenv.2019.135840. Epub 2019 Dec 2.

Abstract

PM2.5 samples were collected inside and outside a primary school classroom in Beijing in 2015 and analysed for 11 polycyclic aromatic hydrocarbons (PAHs) and 10 nitro-PAHs (NPAHs). In the sampling period in the heating season (namely, the heating period), the median concentrations of indoor and outdoor PAHs were 223 ng/m3 and 264 ng/m3, respectively, and those of indoor and outdoor NPAHs were 3.61 ng/m3 and 5.12 ng/m3, respectively. The concentrations of PAHs and NPAHs were consistently higher in the heating period than those (indoor PAHs: 8.75 ng/m3, outdoor PAHs: 8.95 ng/m3, indoor NPAHs: 0.25 ng/m3, outdoor NPAHs: 0.40 ng/m3) in the sampling period in the non-heating season (namely, the non-heating period). In both periods, total PAHs and total NPAHs in indoor PM2.5, as well as most individual PAHs and NPAHs, were positively correlated with the outdoor PAH and NPAH concentrations (p < 0.05). This finding suggests that indoor PAHs and NPAHs are largely dependent on outdoor inputs. It is inferred from the diagnostic ratios that PAHs and NPAHs in indoor and outdoor PM2.5 were affected jointly by coal combustion and vehicular emission in the heating period and mainly derived from vehicle exhaust in the non-heating period. Both indoor and outdoor PM2.5 showed considerable benzo[a]pyrene equivalent toxicity (BaPeq), especially in the heating period. Benzo[c]fluorene (BcFE) had relatively low concentrations but large contributions to BaPeq in both periods. This is the first report of PM2.5-bound BcFE inside and outside classrooms in Beijing. This result indicates that neglecting PAHs with low abundance but high toxicity leads to a significant underestimation of the overall PAH toxicity. The inhalation cancer risk (CR) of PAHs and NPAHs in PM2.5 during the primary school year exceeded the acceptable level as defined by the U.S. EPA, emphasizing its impact on the lifetime CR in schoolchildren.

Keywords: Benzo[c]fluorene; Coal combustion; Indoor pollution; Schoolchildren; Vehicle emission.

MeSH terms

  • Air Pollutants
  • Beijing
  • Environmental Monitoring
  • Humans
  • Neoplasms*
  • Particulate Matter
  • Polycyclic Aromatic Hydrocarbons
  • Risk Factors

Substances

  • Air Pollutants
  • Particulate Matter
  • Polycyclic Aromatic Hydrocarbons