Through Reducing ROS Production, IL-10 Suppresses Caspase-1-Dependent IL-1β Maturation, thereby Preventing Chronic Neuroinflammation and Neurodegeneration

Int J Mol Sci. 2020 Jan 11;21(2):465. doi: 10.3390/ijms21020465.

Abstract

Chronic neuroinflammation contributes to the pathogenesis of Parkinson's disease (PD). However, cellular and molecular mechanisms by which chronic neuroinflammation is formed and maintained remain elusive. This study aimed to explore detailed mechanisms by which anti-inflammatory cytokine interleukin-10 (IL-10) prevented chronic neuroinflammation and neurodegeneration. At 24 h after an intranigral injection of lipopolysaccharide (LPS), levels of NLRP3, pro-caspase-1, pro-IL-1β, active caspase-1, and mature IL-1β in the midbrain were much higher in IL-10-/- mice than wildtype mice. Mechanistically, IL-10-/- microglia produced more intracellular reactive oxygen species (iROS) and showed more profound activation of NADPH oxidase (NOX2) than wildtype microglia. Meanwhile, suppression of NOX2-derived iROS production blocked LPS-elicited caspase-1 activation and IL-1β maturation in IL-10-/- microglia in vitro and in vivo. One month after intranigral LPS injection, IL-10-/- mice revealed more profound microglial activation and dopaminergic neurodegeneration in the substantia nigra than wildtype mice. Importantly, such PD-like pathological changes were prevented by IL-1β neutralization. Collectively, IL-10 inhibited LPS-elicited production of NOX2-derived iROS thereby suppressing synthesis of NLRP3, pro-caspase-1 and pro-IL-1β and their activation and cleavage. By this mechanism, IL-10 prevented chronic neuroinflammation and neurodegeneration. This study suggested boosting anti-inflammatory effects of IL-10 and suppressing NLRP3 inflammasome activation could be beneficial for PD treatment.

Keywords: IL-10; IL-1β; NLRP3 inflammasome; Parkinson’s disease; ROS; neuroinflammation.

MeSH terms

  • Animals
  • Caspase 1 / metabolism*
  • Cells, Cultured
  • Dopaminergic Neurons / drug effects
  • Dopaminergic Neurons / metabolism*
  • Female
  • Interleukin-10 / genetics
  • Interleukin-10 / metabolism*
  • Interleukin-1beta / metabolism*
  • Lipopolysaccharides / toxicity
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microglia / drug effects
  • Microglia / metabolism
  • NADPH Oxidase 2 / metabolism
  • NLR Family, Pyrin Domain-Containing 3 Protein / metabolism
  • Reactive Oxygen Species / metabolism*
  • Substantia Nigra / cytology
  • Substantia Nigra / metabolism

Substances

  • Interleukin-1beta
  • Lipopolysaccharides
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Nlrp3 protein, mouse
  • Reactive Oxygen Species
  • Interleukin-10
  • Cybb protein, mouse
  • NADPH Oxidase 2
  • Caspase 1