Poor wetting and/or particle aggregation are the shortcomings of the dried nanocrystalline suspensions, which subsequently might hinder the superior dissolution performance of the nano-crystalline suspensions. The objective of this study was to evaluate the effect of wetting agents and disintegrants on the dissolution performance of dried nanocrystals of an active pharmaceutical ingredient (API) with poor wetting property. Danazol, a BCS Class II compound with high LogP and low polar surface area, was chosen as a model compound for this study. Danazol nanocrystalline suspension was prepared by wet-media milling and converted into powder via spray granulation either with mannitol or microcrystalline cellulose as carriers at a drug: carrier ratio of 1:9 w/w. Danazol nanocrystalline suspension showed a superior dissolution performance compared to an un-milled danazol suspension. Dried danazol nanocrystals suffered from poor wetting leading to hindered dissolution performance i.e. ~ 40% and ~ 15% drug dissolution within 15 min for the mannitol and microcrystalline cellulose-based granules, respectively. Addition of a lipophilic surfactant (i.e. docusate sodium) at a surfactant: drug ratio of 0.015: 1 w/w during granulation helped in retaining the superior drug dissolution rates i.e. more than 80% drug dissolution within 15 min for mannitol-based granules by enhancing the wettability of dried danazol nanocrystals when compared to a hydrophilic surfactant (i.e. poloxamer 188) or disintegrant (i.e. sodium starch glycolate or croscarmellose sodium). The fast-dissolving mannitol-based granules containing danazol nanocrystals and docusate sodium were compressed into a tablet dosage form. The tablets containing danazol nanocrystals with docusate sodium showed a superior dissolution performance compared to a tablet containing un-milled danazol with docusate sodium.
Keywords: Danazol; Danazol (PubChem CID: 28417); Disintegrants; Nanocrystalline suspension; Nanocrystals; Poor wetting; Spray granulation; Wet media milling; Wetting Agents.
Copyright © 2020 Elsevier B.V. All rights reserved.