Capture Deformation Twinning in Mg during Shock Compression with Ultrafast Synchrotron X-Ray Diffraction

Phys Rev Lett. 2019 Dec 20;123(25):255501. doi: 10.1103/PhysRevLett.123.255501.

Abstract

Deformation twinning plays a vital role in accommodating plastic deformation of hexagonal-close-packed (hcp) metals, but its mechanisms are still unsettled under high strain rate shock compression. Here we investigate deformation twinning in shock-compressed Mg as a typical hcp metal with in situ, ultrafast synchrotron x-ray diffraction. Extension twinning occurs upon shock compression along ⟨112[over ¯]0⟩ and ⟨101[over ¯]0⟩, but only upon release for loading along ⟨0001⟩. Such deformation mechanisms are a result of the polarity of deformation twinning, which depends on directionality and relative magnitude of resolved shear stress and may be common for Mg and its alloys in a wide range of strain rates.