Background: Sea cucumber is a rich source of eicosapentaenoic acid in the form of eicosapentaenoic acid-enriched phospholipids (EPA-PL). It is known to be efficacious in preventing obesity. However, few studies have focused on the role of EPA-PL in inhibiting lipid accumulation by lipid droplets (LDs). This study first investigated the effect of EPA-PL from sea cucumber on the formation of LDs and the underlying mechanism in C57BL/6J mice. The mice were randomly divided into two groups and treated for 8 weeks or 3, 7, and 14 days with either (i) a high-sucrose diet (model group), (ii) a high-sucrose diet plus 2% EPA-PL (EPA-PL group).
Results: Eight-week EPA-PL supplementation significantly reduced lipid accumulation and LD size in liver and white adipose tissue (WAT), which was accompanied by the decreased expression of LDs-associated protein FSP27. A 3-day EPA-PL treatment suppressed the mRNA expression of Fsp27. The mRNA level of Fsp27 reached its 'normal level' after withdrawing EPA-PL for 7 days, suggesting that EPA-PL might serve as a rapid regulator of FSP27. Furthermore, EPA-PL increased the expression of lipolysis genes Hsl and Atgl accompanied by the regulation of Pparγ in WAT.
Conclusions: Dietary EPA-PL from sea cucumber (Cucumaria frondosa) protected against lipid accumulation by regulating LDs-associated protein FSP27, which might provide novel evidence for the anti-obesity action of EPA-PL. © 2020 Society of Chemical Industry.
Keywords: EPA-PL; FSP27; lipid accumulation; lipid droplet; sea cucumber.
© 2020 Society of Chemical Industry.