The layered transition metal dichalcogenides (TMDs) and transition metal phosphides are low-cost, earth-abundant, and robust electrocatalysts for hydrogen evolution reaction (HER). Integrating them into hybrid nanostructures is potentially promising to further boost the catalytic activity toward HER based on their synergistic effects. Herein, we report a general method for the synthesis of a series of MoSe2-based hybrid nanostructures, including MoSe2-Ni2P, MoSe2-Co2P, MoSe2-Ni, MoSe2-Co, and MoSe2-NiS, by postgrowth of Ni2P, Co2P, Ni, Co, and NiS nanostructures on the presynthesized MoSe2 nanosheet-assembled nanospheres, respectively, via a colloidal synthesis method. As a proof-of-concept application, the as-synthesized hybrid nanostructures are used as electrocatalysts for HER, exhibiting high activity and stability in acidic media. Among them, the MoSe2-Co2P composite shows the highest HER activity with an overpotential of 167 mV at 10 mA cm-2.
Copyright © 2019 Shikui Han et al.