Existing evidence has shown that circulating Epstein-Barr virus (EBV)-miR-BART13-3p is highly expressed in plasma of nasopharyngeal carcinoma (NPC) patients, especially among patients with advanced diseases. However, the exact role that EBV-miR-BART13-3p plays in the development of NPC remains poorly understood. Here we show that up-regulated expression of EBV-miR-BART13-3p leads to increased capacity in migration and invasion of NPC cells in vitro and causes tumor metastasis in vivo. Furthermore, we find that EBV-miR-BART13-3p directly targets ABI2, known as a tumor suppressor and a cell migration inhibitor, drives epithelial-mesenchymal transition (EMT) by activating c-JUN/SLUG signaling pathway. Silencing ABI2 shows similar effects to overexpression of EBV-miR-BART13-3p, whereas reconstitution of ABI2 resulted in a phenotypic reversion, highlighting the role of ABI2 in EBV-miR-BART13-3p-driven metastasis in NPC. Besides, expression levels of ABI2 in NPC tissue samples correlate with N stages of NPC patients. Taken together, these results suggest a novel mechanism by which ABI2 downregulation by EBV-miR-BART13-3p promotes EMT and metastasis of NPC via upregulating c-JUN/SLUG signaling pathway.
Keywords: ABI2; EBV-miR-BART13-3p; SLUG; epithelial-mesenchymal transition (EMT); nasopharyngeal carcinoma.