Recent studies have demonstrated sex-specific differences in etiology, course and brain dysfunction that are associated with cigarette smoking. However, little is known about sex-specific differences in subcortical structure and function. In this study, structural and resting-state functional magnetic resonance imaging (fMRI) data were collected from 60 cigarette smokers (25 females) and 67 nonsmokers (28 females). The structural MRI was applied to identify deficits in sex-specific subcortical volume. Using resting-state fMRI, sex-related alterations in resting-state functional connectivity (rsFC) were investigated in subcortical nuclei with volume deficits as seed regions. Compared to nonsmokers, male but not female smokers demonstrated a significantly smaller volume in the left caudate, while female but not male smokers showed a smaller volume in the right amygdala. Resting-state FC analysis revealed that male but not female smokers had increased rsFC between the left caudate and the left prefrontal cortex but decreased rsFC within the bilateral caudate and between the right amygdala and right orbitofrontal cortex (OFC). Furthermore, the right amygdala volume was negatively correlated with the impulsivity score in female but not male smokers. The rsFC of the right amygdala-OFC circuit was negatively associated with the craving score in male but not female smokers. These findings indicate that cigarette smoking may have differential effects on the caudate and amygdala volumes as well as rsFC between men and women, contributing to our knowledge of sex-specific effects of nicotine addiction. Such sex-specific differences in subcortical structure and function may provide a methodological framework for the development of sex-specific relapse prevention therapies.
Keywords: Resting-state functional connectivity; Sex-specific differences; Smokers; Subcortical nuclei; Volume.