Therapies that target scar formation after myocardial infarction (MI) could prevent ensuing heart failure or death from ventricular arrhythmias. We have previously shown that recombinant human platelet-derived growth factor-AB (rhPDGF-AB) improves cardiac function in a rodent model of MI. To progress clinical translation, we evaluated rhPDGF-AB treatment in a clinically relevant porcine model of myocardial ischemia-reperfusion. Thirty-six pigs were randomized to sham procedure or balloon occlusion of the proximal left anterior descending coronary artery with 7-day intravenous infusion of rhPDGF-AB or vehicle. One month after MI, rhPDGF-AB improved survival by 40% compared with vehicle, and cardiac magnetic resonance imaging showed left ventricular (LV) ejection fraction improved by 11.5%, driven by reduced LV end-systolic volumes. Pressure volume loop analyses revealed improved myocardial contractility and energetics after rhPDGF-AB treatment with minimal effect on ventricular compliance. rhPDGF-AB enhanced angiogenesis and increased scar anisotropy (high fiber alignment) without affecting overall scar size or stiffness. rhPDGF-AB reduced inducible ventricular tachycardia by decreasing heterogeneity of the ventricular scar that provides a substrate for reentrant circuits. In summary, we demonstrated that rhPDGF-AB promotes post-MI cardiac wound repair by altering the mechanics of the infarct scar, resulting in robust cardiac functional improvement, decreased ventricular arrhythmias, and improved survival. Our findings suggest a strong translational potential for rhPDGF-AB as an adjunct to current MI treatment and possibly to modulate scar in other organs.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.