The metabolic activity of a mammalian cell changes dynamically over time and is tied to the changing metabolic demands of cellular processes such as cell differentiation and proliferation. While experimental tools like time-course metabolomics and flux tracing can measure the dynamics of a few pathways, they are unable to infer fluxes at the whole network level. To address this limitation, we have developed the Dynamic Flux Activity (DFA) algorithm, a genome-scale modeling approach that uses time-course metabolomics to predict dynamic flux rewiring during transitions between metabolic states. This chapter provides a protocol for applying DFA to characterize the dynamic metabolic activity of various cancer cell lines.
Keywords: Cancer metabolism; Constraint-based modeling; Dynamic flux activity; Flux balance analysis; Genome-scale metabolic models; Time-course metabolomics.