Li4Ti5O12 anode can operate at extraordinarily high rates and for a very long time, but it suffers from a relatively low capacity. This has motivated much research on Nb2O5 as an alternative. In this work, we present a scalable chemical processing strategy that maintains the size and morphology of nano-crystal precursor but systematically reconstitutes the unit cell composition, to build defect-rich porous orthorhombic Nb2O5-x with a high-rate capacity many times those of commercial anodes. The procedure includes etching, proton ion exchange, calcination, and reduction, and the resulting Nb2O5-x has a capacity of 253 mA h g-1 at 0.5C, 187 mA h g-1 at 25C, and 130 mA h g-1 at 100C, with 93.3% of the 25C capacity remaining after cycling for 4,000 times. These values are much higher than those reported for Nb2O5 and Li4Ti5O12, thanks to more available surface/sub-surface reaction sites and significantly improved fast ion and electron conductivity.
Keywords: Chemical Synthesis; Energy Materials; Energy Storage.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.