The precise understanding of the dopaminergic (DA) system and its pharmacological modifications is crucial for diagnosis and treatment of neuropsychiatric disorders, as well as for understanding basic processes, such as motivation and reward. We probed the functional connectivity (FC) of subcortical nuclei related to the DA system according to seed regions defined according to an atlas of subcortical nuclei. We conducted a large pharmaco-fMRI study using a double-blind, placebo-controlled design, where we examined the effect of l -DOPA, a dopamine precursor, and amisulpride, a D2/D3-receptor antagonist on resting-state FC in 45 healthy young adults using a cross-over design. We examined the FC of subcortical nuclei with connection to the reward system and their reaction to opposing pharmacological probing. Amisulpride increased FC from the putamen to the precuneus and from ventral striatum to precentral gyrus. l -DOPA increased FC from the ventral tegmental area (VTA) to the insula/operculum and between ventral striatum and ventrolateral prefrontal cortex and it disrupted ventral striatal and dorsal caudate FC with the medial prefrontal cortex. In an exploratory analysis, we demonstrated that higher self-rated impulsivity goes together with a significant increase in VTA-mid-cingulate gyrus FC during l -DOPA-challenge. Therefore, our DA challenge modulated distinct large-scale subcortical connectivity networks. A dopamine-boost can increase midbrain DA nuclei connectivity to the cortex. The involvement of the VTA-cingulum connectivity in dependence of impulsivity has implications for diagnosis and therapy in disorders like ADHD.
Keywords: L-DOPA; amisulpride; dopamine; insula; pharmaco-fMRI; resting-state fMRI; ventral tegmental area.
© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.