Multiple Scattering from Electrospun Nanofibers with Embedded Silver Nanoparticles of Tunable Shape for Random Lasers and White-Light-Emitting Diodes

ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2783-2792. doi: 10.1021/acsami.9b16059. Epub 2020 Jan 6.

Abstract

Random lasers (RLs) are convenient, tunable, and widely applicable. However, the influence of fluorescence lifetime on the scattering and nanofiber distribution of nanofibers with various shapes of silver nanoparticles (Ag NPs) embedded within is unclear. We prepared poly(vinyl alcohol) (PVA) nanofibers with Ag NPs through electrospinning (ES) and pyrromethene 597 dye doping. We determined the influences of the particles on scattering enhancement and localized surface plasmon resonance (LSPR) in RLs. The distinct scattering rates and LSPR can be used to control optical properties for sensing devices and other applications. Compared with traditional films, the threshold of the nanofibers with Ag NPs is 35% lower. In addition to improved matching between the LSPR and emission spectra, enhanced coupling of the electric field with nonradiative energy amplifies the radiative emission. Furthermore, the luminescence lifetime shortened by increasing the scattering rate. An excessive scattering rate may accelerate radiative recombination and convert some recombination into nonradiative recombination to produce a more sensitive device. Finally, we applied the prepared nanofibers to a backlight display and fabricated a white-light-emitting diode (LED) with a distinct thickness of nanofibers. The fabricated device is suitable for application in other LEDs and RL devices.

Keywords: electrospun fibers; light scattering; plasmonic; random lasers; silver nanoparticles.