Purpose of review: To summarize recent advances in the understanding of the pathogenesis of IgG4-related disease.
Recent findings: Limited data exist to explain genetic susceptibility to IgG4-related disease and the underlying triggers for this disease have not yet been identified. Cytotoxic CD4 T cells and activated B cells infiltrate affected organs and express proinflammatory and profibrotic molecules. Antigen presented by activated B cells likely reactivates cytotoxic CD4 T cells in disease tissues and these T cells in turn induce the targeted apoptotic death of host cells in certain organs - which presumably present the same antigenic peptide on human leukocyte antigen class II molecules of relevance that was also presented on B cells during reactivation. A subsequent exaggerated tissue remodeling process is orchestrated by cytokines, chemokines, and enzymes secreted by both activated B cells and CD4CTLs. These molecules induce an overexuberant repair process resulting in fibrosis and loss of target organ function.
Summary: In IgG4-related disease, presumably self-reactive cytotoxic CD4 T cells infiltrate tissues, are reactivated by T cells and induce apoptotic death. Molecules secreted by activated B cells and by CD4CTLs drive an exaggerated wound healing response resulting in fibrosis and compromised tissue function.