Although primarily known as an ablative modality, histotripsy can increase the efficacy of lytic therapy in a retracted venous clot model. Bubble cloud oscillations are the primary mechanism of action for histotripsy, and the type of bubble activity is dependent on the pulse duration. A retracted human venous clot model was perfused with and without the thrombolytic recombinant tissue plasminogen activator (rt-PA). The clot was exposed to histotripsy pulses of single- or five-cycle duration and peak negative pressures of 0-30 MPa. Bubble activity within the clot was monitored via passive cavitation imaging. The combination of histotripsy and rt-PA was more efficacious than rt-PA alone for single- and five-cycle pulses with peak negative pressures of 25 and 20 MPa, respectively. For both excitation schemes, the detected acoustic emissions correlated with the degree of thrombolytic efficacy. These results indicate that rt-PA and single- or multicycle histotripsy pulses enhance thrombolytic therapy.
Keywords: Deep vein thrombosis; Histotripsy; Intrinsic threshold; Microtripsy; Shock scattering; Thrombolysis; Thrombotripsy.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.