Long-range spin dependent delocalization promoted by the pseudo Jahn-Teller effect

J Chem Phys. 2019 Nov 28;151(20):201103. doi: 10.1063/1.5128117.

Abstract

Strong spin-dependent delocalization (double exchange) was previously demonstrated for the complexes, NN-Bridge-SQ-Coiii(py)2Cat-Bridge-NN (where NN = S = 12 nitronylnitroxide, Bridge = 1,4-phenylene and single bond, SQ = S = 12 orthobenzosemiquinone, Coiii = low-spin d6 cobalt 3+, and Cat = diamagnetic catecholate). The mixed-valent S = 12 SQ-Coiii-Cat triad results in ferromagnetic alignment of localized (pinned) NN spins which are ∼22 Å apart (Bridge = Ph). Herein, we report similar ferromagnetic coupling of localized verdazyl (Vdz) radical spins. The origin of the magnetic exchange results from a second order vibronic effect (pseudo Jahn-Teller effect) in [Vdz-diox-Ru(py)2-diox-Vdz]0, which possesses a diamagnetic [diox-Ru-diox]0 triad by virtue of strong antiferromagnetic SQ-Ruiii exchange.