The leptomeninges, referring to the arachnoid and pia mater and their projections into the perivascular compartments in the central nervous system, actively participate in diverse biological processes including fluid homeostasis, immune cell infiltrations, and neurogenesis, yet their detailed cellular and molecular identities remain elusive. This study aimed to characterize platelet-derived growth factor beta (PDGFR-β)-expressing cells in the leptomeninges in the adult rat brain using light and electron microscopy. PDGFR-β+ cells were observed in the inner arachnoid, arachnoid trabeculae, pia mater, and leptomeningeal sheath of the subarachnoid vessels, thereby forming a cellular network throughout the leptomeninges. Leptomeningeal PDGFR-β+ cells were commonly characterized by large euchromatic nuclei, thin branching processes forming web-like network, and the expression of the intermediate filaments nestin and vimentin. These cells were typical of active fibroblasts with a well-developed rough endoplasmic reticulum and close spatial correlation with collagen fibrils. Leptomeningeal PDGFR-β+ cells ensheathing the vasculature in the subarachnoid space joined with pial PDGFR-β+ cells upon entering the cortical parenchyma, yet perivascular PDGFR-β+ cells in these penetrating vessels underwent abrupt changes in their morphological and molecular characteristics: they became more flattened with loss of immunoreactivity for nestin and vimentin and deficient collagen deposition, which was indicative of inactive fibroblasts termed fibrocytes. In the cortical parenchyma, PDGFR-β immunoreactivity was almost exclusively localized to larger caliber vessels, and significantly decreased in capillary-like microvessels. Collectively, our data identify PDGFR-β as a novel cellular marker for leptomeningeal fibroblasts comprising the leptomeninges and perivascular adventitial cells of the subarachnoid and penetrating large-sized cortical vasculatures.
Keywords: Arachnoid mater; Leptomeningeal fibroblast; Leptomeninges; Perivascular fibroblast; Pia mater; Platelet-derived growth factor beta.