In rodents, the anterior cingulate (ACC), prelimbic (PL), and infralimbic cortex (IL) comprise the medial prefrontal cortex (mPFC). Through extensive connections with cortical and subcortical structures, the mPFC plays a key modulatory role in the neuronal circuits underlying associative fear and reward learning. In this article, we have compiled the evidence that associative learning induces plasticity in both the intrinsic and synaptic excitability of mPFC neurons to modulate conditioned fear and cocaine seeking behavior. The literature highlights the accumulating evidence that plasticity in the intrinsic excitability of mPFC neurons represents a major cellular mechanism that interacts with synaptic changes to alter the impact of the mPFC on fear and reward circuits.
Keywords: Cocaine; Fear conditioning; Infralimbic cortex; Intrinsic excitability; Prelimbic cortex.
Copyright © 2019 Elsevier Inc. All rights reserved.