Primary cilia are essential signalling organelles found on the apical surface of epithelial cells, where they coordinate chemosensation, mechanosensation and light sensation. Motile cilia play a central role in establishing fluid flow in the respiratory tract, reproductive tract, brain ventricles and ear. Genetic defects affecting the structure or function of cilia can lead to a broad range of developmental and degenerative diseases known as ciliopathies. Splicing contributes to the pathogenesis, diagnosis and treatment of ciliopathies. Tissue-specific alternative splicing contributes to the tissue-specific manifestation of ciliopathy phenotypes, for example the retinal-specific effects of some genetic defects, due to specific transcript expression in the highly specialised ciliated cells of the retina, the photoreceptor cells. Ciliopathies can arise both as a result of genetic variants in spliceosomal proteins, or as a result of variants affecting splicing of specific cilia genes. Here we discuss the opportunities and challenges in diagnosing ciliopathies using RNA sequence analysis and the potential for treating ciliopathies in a relatively mutation-neutral way by targeting splicing. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Copyright © 2019 Elsevier B.V. All rights reserved.