Follicular T helper cells shape the HCV-specific CD4+ T cell repertoire after virus elimination

J Clin Invest. 2020 Feb 3;130(2):998-1009. doi: 10.1172/JCI129642.

Abstract

BACKGROUNDChronic hepatitis C virus (HCV) infection is characterized by a severe impairment of HCV-specific CD4+ T cell help that is driven by chronic antigen stimulation. We aimed to study the fate of HCV-specific CD4+ T cells after virus elimination.METHODSHCV-specific CD4+ T cell responses were longitudinally analyzed using MHC class II tetramer technology, multicolor flow cytometry, and RNA sequencing in a cohort of patients chronically infected with HCV undergoing therapy with direct-acting antivirals. In addition, HCV-specific neutralizing antibodies and CXCL13 levels were analyzed.RESULTSWe observed that the frequency of HCV-specific CD4+ T cells increased within 2 weeks after initiating direct-acting antiviral therapy. Multicolor flow cytometry revealed a downregulation of exhaustion and activation markers and an upregulation of memory-associated markers. Although cells with a Th1 phenotype were the predominant subset at baseline, cells with phenotypic and transcriptional characteristics of follicular T helper cells increasingly shaped the circulating HCV-specific CD4+ T cell repertoire, suggesting antigen-independent survival of this subset. These changes were accompanied by a decline of HCV-specific neutralizing antibodies and the germinal center activity.CONCLUSIONWe identified a population of HCV-specific CD4+ T cells with a follicular T helper cell signature that is maintained after therapy-induced elimination of persistent infection and may constitute an important target population for vaccination efforts to prevent reinfection and immunotherapeutic approaches for persistent viral infections.FUNDINGDeutsche Forschungsgemeinschaft (DFG, German Research Foundation), the National Institute of Allergy and Infectious Diseases (NIAID), the European Union, the Berta-Ottenstein-Programme for Advanced Clinician Scientists, and the ANRS.

Keywords: Adaptive immunity; Cellular immune response; Immunology; Infectious disease; MHC class 2.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / administration & dosage
  • Female
  • Flow Cytometry
  • Follow-Up Studies
  • Hepacivirus / immunology*
  • Hepatitis C, Chronic / drug therapy
  • Hepatitis C, Chronic / immunology*
  • Hepatitis C, Chronic / pathology
  • Humans
  • Male
  • Middle Aged
  • Th1 Cells / pathology

Substances

  • Antiviral Agents