Dense Depth Estimation in Monocular Endoscopy With Self-Supervised Learning Methods

IEEE Trans Med Imaging. 2020 May;39(5):1438-1447. doi: 10.1109/TMI.2019.2950936. Epub 2019 Nov 1.

Abstract

We present a self-supervised approach to training convolutional neural networks for dense depth estimation from monocular endoscopy data without a priori modeling of anatomy or shading. Our method only requires monocular endoscopic videos and a multi-view stereo method, e.g., structure from motion, to supervise learning in a sparse manner. Consequently, our method requires neither manual labeling nor patient computed tomography (CT) scan in the training and application phases. In a cross-patient experiment using CT scans as groundtruth, the proposed method achieved submillimeter mean residual error. In a comparison study to recent self-supervised depth estimation methods designed for natural video on in vivo sinus endoscopy data, we demonstrate that the proposed approach outperforms the previous methods by a large margin. The source code for this work is publicly available online at https://github.com/lppllppl920/EndoscopyDepthEstimation-Pytorch.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Endoscopy*
  • Humans
  • Neural Networks, Computer
  • Supervised Machine Learning
  • Tomography, X-Ray Computed