Nanozymes, which are functional nanomaterials with enzyme-like characteristics, have emerged as a highly-stable and low-cost alternative to natural enzymes. Apart from overcoming the limitations of natural enzymes (e.g., high cost, low stability or complex production), nanozymes are also equipped with the unique intrinsic properties of nanomaterials such as magnetism, luminescence or near infrared absorbance. Therefore, the development of nanozymes exhibiting additional functions to their catalytic activity has opened up new opportunities and applications within the biomedical field. To highlight the progress in the field, this review summarizes the novel applications of multifunctional nanozymes in various biomedical-related fields ranging from cancer diagnosis, cancer and antibacterial therapy to regenerative medicine. Future challenges and perspectives that may advance nanozyme research are also discussed at the end of the review.