Background: Preclinical studies underlined the relevance of Nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor pathway in the pathogenesis of Parkinson's disease (PD).
Objective: The objective of this study was to explore Nrf2 pathway in vivo in PD, looking for novel disease biomarkers and therapeutic targets.
Methods: The levels of Nrf2, the downstream effectors (NAD(P)H dehydrogenase [quinone] 1 (Nqo1) enzyme, glutathione metabolism enzymes Glutamate-cysteine ligase (GCL) and Glutathione Reductase (GR)), the upstream activators (redox state and mitochondrial dysfunction), and α-synuclein oligomers were assessed in the blood leukocytes of PD patients comparatively to controls. Biochemical data were correlated to clinical parameters.
Results: In PD, Nrf2 was highly transcribed and expressed as well as its target effectors. The mitochondrial complex I activity was reduced and the oxidized form of glutathione prevailed, disclosing the presence of pathway's activators. Also, α-synuclein oligomers levels were increased. Nrf2 transcript and oligomers levels correlated with PD duration.
Conclusions: Blood leukocytes mirror pathogenic mechanisms of PD, showing the systemic activation of the Nrf2 pathway and its link with synucleinopathy and clinical events. © 2019 International Parkinson and Movement Disorder Society.
Keywords: Nrf2; Parkinson's disease; biomarkers; oxidative stress; synuclein.
© 2019 International Parkinson and Movement Disorder Society.