Previous research has quantified the peak movement demands of elite rugby league match-play, but the peak accelerometer load or the semi-professional peak demands remain unknown. The aim of this research was to determine the peak movement demands of professional and semi-professional rugby league competition. Wearable microtechnology devices tracked the physical activity profiles of players during 26 professional (n = 351 files) and 22 semi-professional (n = 267 files) matches. Following each match, data were exported in raw form to extract the peak 1- to 10-min periods for speed, average acceleration, and accelerometer load of each player, using a rolling average method. To determine the difference between playing levels (professional vs. semi-professional) and position (forwards vs. backs), linear mixed models were used. The intercept and the slope were calculated based on the power law relationship to provide the peak, and rate of decay, of each dependent variable. Cohen's effect size (ES) statistic was used to determine the magnitude of differences between positions and playing level. There was little difference between playing standards, with only small differences in running speed, with a greater intercept and slope for the professional forwards compared with semi-professional forwards (intercept ES: 0.37; 90%CL: 0.19 to 0.55; slope ES: 0.35; 0.15 to 0.55). For positional comparisons (forwards vs. backs), there was no difference in running speeds at the professional level, but there was substantially greater running speed for backs compared to forwards in semi-professional competition, with small to moderate differences (ES range: 0.60-0.39). Both professional and semi-professional forwards showed small to moderately higher accelerometer load compared to backs, which increased with period duration (ES range: 0.22-0.79). Similarly, acceleration demands were greater for forwards compared to backs across both playing standards, with moderate to large differences (ES range: 0.52-0.96). Overall, the results of this study show that there is a small difference in the peak running speed for forwards in professional competition, but otherwise there are no meaningful differences in movement demands of professional and semi-professional rugby league match-play. Forwards display greater acceleration and accelerometer load across a number of rolling average durations compared to backs.
Keywords: acceleration; accelerometer; activity profiles; microtechnology; rolling average; team sport.
Copyright © 2019 Johnston, Devlin, Wade and Duthie.