Perfluoralkylated substances (PFAS) such as perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS) are used to produce, e.g., surface coatings with water- and dirt-repellent properties. These substances have been shown to be hepatotoxic in rodents, and the mechanism of action is mostly attributed to the PFAS-mediated activation of the peroxisome proliferator-activated receptor alpha (PPARα). In the present study, we investigated by using luciferase-based reporter gene assays whether PFOA, PFOS and six alternative PFAS can activate, in addition to PPARα, eight other human nuclear receptors. All tested PFAS except for perfluorobutanesulfonic acid (PFBS) were able to activate human PPARα. Perfluoro-2-methyl-3-oxahexanoic acid (PMOH) and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were weak agonists of human PPARγ. The other human nuclear receptors (PPARδ, CAR, PXR, FXR, LXRα, RXRα and RARα) were not affected by any PFAS tested in this study. Although PMOH was more effective than PFOA in stimulating PPARα in the transactivation assay, it was less effective in stimulating PPARα-dependent target gene expression in human HepG2 hepatocarcinoma cells. Notably, any effect observed in this in vitro study only occurred at concentrations higher than 10 μM of the respective PFAS which is in all cases several magnitudes above the average blood concentration in the Western population. Thus, the results suggest that nuclear receptor activation may only play a minor role in potential PFAS-mediated adverse effects in humans.
Keywords: Nuclear receptor; PFAS; PFOA; PFOS; PPARα; Reporter gene assay.
Copyright © 2019 Elsevier Ltd. All rights reserved.