Optimization of the classical interference visibility of an asymmetric Mach-Zehnder interferometer based on planar lightwave circuit technology

Appl Opt. 2019 Oct 1;58(28):7817-7822. doi: 10.1364/AO.58.007817.

Abstract

Silicon-based devices offer great potential for quantum key distribution (QKD) with the benefits of miniaturization, scalability, complexity, and improved performance. Based on the planar lightwave circuit technology, a 200 ps delay-time asymmetric Mach-Zehnder interferometer (AMZI) decoding chip was designed and fabricated that can adjust the power ratio of the two arms by introducing a variable beam splitter. The measured delay time is approximately 200 ps, and the two output pulses' peaks can be balanced by loading an appropriate voltage on the variable beam splitter. The classical interference visibility of the AMZI versus temperature was studied, and it is highly temperature dependent. The interference visibility can reach as high as 99.72% under appropriate temperature control. This AMZI can act as a passive decoder in fiber-based QKD systems.