Phonon laser in a cavity magnomechanical system

Sci Rep. 2019 Oct 31;9(1):15723. doi: 10.1038/s41598-019-52050-7.

Abstract

Using phonons to simulate an optical two-level laser action has been the focus of research. We theoretically study phonon laser in a cavity magnomechanical system, which consist of a microwave cavity, a sphere of magnetic material and a uniform external bias magnetic field. This system can realize the phonon-magnon coupling and the cavity photon-magnon coupling via magnetostrictive interaction and magnetic dipole interaction respectively, the magnons are driven directly by a strong microwave field simultaneously. Frist, the intensity of driving magnetic field which can reach the threshold condition of phonon laser is given. Then, we demonstrate that the adjustable external magnetic field can be used as a good control method to the phonon laser. Compared with phonon laser in optomechanical systems, our scheme brings a new degree of freedom of manipulation. Finally, with the experimentally feasible parameters, threshold power in our scheme is close to the case of optomechanical systems. Our study may inspire the field of magnetically controlled phonon lasers.