In the production of voiced speech, glottal flow skewing refers to the tilting of the glottal flow pulses to the right, often characterized as a delay of the peak, compared to the glottal area. In the past four decades, several studies have addressed this phenomenon using modeling of voice production with analog circuits and computer simulations. However, previous studies measuring flow skewing in natural production of speech are sparse and they contain little quantitative data about the degree of skewing between flow and area. In the current study, flow skewing was measured from the natural production of 40 vowel utterances produced by 10 speakers. Glottal flow was measured from speech using glottal inverse filtering and glottal area was captured with high-speed videoendoscopy. The estimated glottal flow and area waveforms were parameterized with four robust parameters that measure pulse skewness quantitatively. Statistical tests obtained for all four parameters showed that the flow pulse was significantly more skewed to the right than the area pulse. Hence, this study corroborates the existence of flow skewing using measurements from natural speech production. In addition, the study yields quantitative data about pulse skewness in simultaneous measured glottal flow and area in natural production of speech.