Traumatic brain injury (TBI) leaves many survivors with long-term disabilities. A prolonged immune response in the brain may cause neurodegeneration, resulting in chronic neurological disturbances. In this study, using a TBI mouse model, we correlate changes in the local immune response with neurodegeneration/neurological dysfunction over an 8-month period. Flow cytometric analysis reveals a protracted increase in effector/memory CD8+ T cells (expressing granzyme B) in the injured brain. This precedes interleukin-17+CD4+ T cell infiltration and is associated with progressive neurological/motor impairment, increased circulating brain-specific autoantibodies, and myelin-related pathology. Genetic deficiency or pharmacological depletion of CD8+ T cells, but not depletion of CD4+ T cells, improves neurological outcomes and produces a neuroprotective Th2/Th17 immunological shift, indicating a persistent detrimental role for cytotoxic T cells post-TBI. B cell deficiency results in severe neurological dysfunction and a heightened immune reaction. Targeting these adaptive immune cells offers a promising approach to improve recovery following TBI.
Keywords: B cells; CD8(+) T cells; adaptive immune cells; autoantibodies; granzyme B; neuroimmunology; traumatic brain injury.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.