Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2 RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2 RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single-atom catalyst (Ni SAC) with a uniform structure and well-defined Ni-N4 moiety on a conductive carbon support with which to explore the electrochemical CO2 RR. Operando X-ray absorption near-edge structure spectroscopy, Raman spectroscopy, and near-ambient X-ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2 RR. Furthermore, through combination with a kinetics study, the rate-determining step of the CO2 RR was determined to be *CO2 - +H+ →*COOH. This study tackles the four challenges faced by the CO2 RR; namely, activity, selectivity, stability, and dynamics.
Keywords: Active site; Electrochemistry; In situ reactions; Reaction mechanisms; Single-atom catalysts.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.