In this article, we report on the analysis of the extended acoustic signature obtained from the pulse-echo method to evaluate the B/A nonlinear parameter in fluids. In the known form of the method, the first acoustic tone burst from the reflector is used for the parameter measurement. The multiple pulse-echo method (MPEM) makes use of several tone bursts coming from the reflector back wall. The distortion ratio can be increased when the source frequency is tuned to a reflector resonance. The repercussion of this increase in the measurement of the nonlinear parameter B/A is investigated. As a practical result, this work suggests that the fluid volume required for the measurement can be reduced.