Thermal treatment can effectively remediate diesel-contaminated soil, but is considered unsustainable because of its energy-intensive nature and potential to damage soil properties. Here, we used low temperature thermal treatment (LTTT) as an energy-efficient technique to remediate diesel-contaminated soil. The impacts of LTTT on the physiochemical and ecological properties of soils were investigated to evaluate the reusability of heated soil. Heating at 250 °C for 10 min reduced the concentration of the total petroleum hydrocarbons from 6271 mg/kg to 359 mg/kg, which is lower than the Chinese risk screening level of 826 mg/kg. After LTTT, most soil physiochemical properties were nearly unchanged, and the NO3--N and NH4+-N contents increased. Moreover, LTTT-remediated soil was favorable for the germination and early growth of wheat. The microbial community changed substantially, but recovered after being mixed with uncontaminated soil. Finally, exploration of the mechanisms of LTTT revealed that pyrolysis was the dominant mechanism of diesel removal. A biochar-like pyrolytic carbon was formed, which improved the soil reusability.
Keywords: Diesel-contaminated soil; Low temperature thermal treatment; Pyrolysis; Soil properties; Sustainable remediation.
Copyright © 2019 Elsevier Ltd. All rights reserved.