The rat eye fraction, including retina, pigment epithelium and choroid, contains an alcohol dehydrogenase (ADH) isoenzyme that is not present in rat liver. Starch gel electrophoresis of retina ADH shows an anodic band that can be visualized by activity staining, using either ethanol or pentanol as substrates. Ethanol is a poor substrate (Km: 336 mM, at pH 10.0) for the purified retina ADH which prefers long chain, 2-unsaturated and aromatic alcohols. The enzyme has a pH optimum of 10.0 for ethanol oxidation and it is inhibited by 4-methylpyrazole (KI: 10 microM). Electrophoretic and kinetic properties clearly differentiate the retina ADH from the hepatic cathodic ADH isoenzymes and from an anodic chi-ADH-like form that we have also detected in rat liver. At the pH and ethanol concentrations found "in vivo," retina ADH can oxidize ethanol to an appreciable extent. The subsequent production of acetaldehyde and redox change may be responsible for visual disorders during alcohol intoxication.