The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD+ Hydrolysis

ACS Chem Biol. 2019 Dec 20;14(12):2576-2584. doi: 10.1021/acschembio.9b00429. Epub 2019 Nov 6.

Abstract

ADP-ribosyltransferases transfer ADP-ribose from β-NAD+ to acceptors; ADP-ribosylated acceptors are cleaved by ADP-ribosyl-acceptor hydrolases (ARHs) and proteins containing ADP-ribose-binding modules termed macrodomains. On the basis of the ADP-ribosyl-arginine hydrolase 1 (ARH1) stereospecific hydrolysis of α-ADP-ribosyl-arginine and the hypothesis that α-NAD+ is generated as a side product of β-NAD+/ NADH metabolism, we proposed that α-NAD+ was a substrate of ARHs and macrodomain proteins. Here, we report that ARH1, ARH3, and macrodomain proteins (i.e., MacroD1, MacroD2, C6orf130 (TARG1), Af1521, hydrolyzed α-NAD+ but not β-NAD+. ARH3 had the highest α-NADase specific activity. The ARH and macrodomain protein families, in stereospecific reactions, cleave ADP-ribose linkages to N- or O- containing functional groups; anomerization of α- to β-forms (e.g., α-ADP-ribosyl-arginine to β-ADP-ribose- (arginine) protein) may explain partial hydrolysis of ADP-ribosylated acceptors with an increase in content of ADP-ribosylated substrates. Af1521 and ARH3 crystal structures with bound ADP-ribose revealed similar ADP-ribose-binding pockets with the catalytic residues of the ARH and macrodomain protein families in the N-terminal helix and loop. Although the biological roles of the ARHs and macrodomain proteins differ, they share enzymatic and structural properties that may regulate metabolites such as α-NAD+.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • ADP-Ribosylation
  • Adenosine Diphosphate Ribose / metabolism*
  • Animals
  • Catalysis
  • Cells, Cultured
  • Humans
  • Hydrolysis
  • Mice
  • NAD / metabolism*

Substances

  • NAD
  • Adenosine Diphosphate Ribose