An experimental study on ordered pyrochlore structured Gd1.5Ce0.5Ti2O7 was carried out up to 45 GPa by synchrotron radiation X-ray diffraction and Raman spectroscopy. Experimental results show that Gd1.5Ce0.5Ti2O7 transfers to a disordered cotunnite-like phase (Pnma Z = 4) at approximately 42 GPa. Compared with the end member Gd2Ti2O7, the substitution of Ce3+ for Gd3+ increases the transition pressure and the high-pressure stability of the pyrochlore phase. This pressure-induced structure transition is mainly controlled by cationic order-disorder modification, and the cationic radius ratio r A/r B may also be effective for predicting the pyrochlore oxides' high-pressure stability. Two isostructural transitions are observed at 6.5 GPa and 13 GPa, and the unit-cell volume of Gd1.5Ce0.5Ti2O7 as a function of pressure demonstrates its compression behaviour is rather complex.
Keywords: high pressure; order–disorder phase transition; pyrochlore.
© 2019 The Authors.