Paramagnetic ion-mediated sensors can greatly simplify current magnetic sensors for biochemical assays, but it remains challenging because of the limited sensitivity. Herein, we report a magnetic immunosensor relying on Mn(VII)/Mn(II) interconversion and the corresponding change in the low-field nuclear magnetic resonance (LF-NMR) of the transverse relaxation rate (R2). The fact that the NMR R2 of the water protons detected in Mn(II) aqueous solution is much stronger than Mn(VII) aqueous solution enables the modulation of the LF-NMR signal intensity of R2. By employing immunomagnetic separation and enzyme-catalyzed reaction, this Mn(VII)/Mn(II) interconversion allows the development of a background signal-free magnetic immunosensor with a high signal-to-background ratio that enables detection of ractopamine and Salmonella with high sensitivity (the limits of detection for ractopamine and Salmonella are 8.1 pg/mL and 20 cfu/mL, respectively). This Mn-mediated magnetic immunosensor not only retains the good stability but also greatly improves the sensitivity of conventional paramagnetic ion-mediated magnetic sensors, offering a promising platform for sensitive, stable, and convenient bioanalysis.
Keywords: Mn(VII)/Mn(II) interconversion; food-borne pathogen; immunomagnetic separation; magnetic biosensors; transverse relaxation rate.