Dynamic sexual dichromatism occurs when males and females differ in colouration for a limited time. Although this trait has been primarily studied in cephalopods, chameleons, and fishes, recent analyses suggest that dynamic dichromatism is prevalent among anurans and may be mediated through sexual selection and sex recognition. Yellow toads, Incilius luetkenii, exhibit dynamic dichromatism during explosive breeding events at the onset of the rainy season: males change from a cryptic brown to a bright yellow and back again during the brief mating event. We tested the hypothesis that dynamic dichromatism in yellow toads is influenced by conspecific interactions and mediated through sex hormones and stress hormones. We placed male toads into one of four social treatments (with three other males, one male, one female, or no other toads). Immediately before and after each one-hour treatment, we quantified male colour with a reflectance spectrometer and we collected a blood sample to assess plasma concentrations of both testosterone and corticosterone. We found that males held with conspecific animals showed the brightest yellow colour and showed little or no change in their corticosterone levels. Across treatments, toads with duller yellow colour had higher levels of corticosterone. Male colour showed no association with testosterone. Interestingly, males showed substantial temporal variation in colour and corticosterone: toads were duller yellow and exhibited greater levels of corticosterone post-treatment across subsequent days at the onset of the rainy season. Our findings reveal that both conspecific interactions and corticosterone are involved in the dynamic colour change of yellow toads.
Keywords: Bufo luetkenii; Colour change; Corticosterone; Dynamic sexual dichromatism; Incilius luetkenii; Reflectance spectrometry; Sexual selection; Testosterone; Yellow toad.
Copyright © 2019. Published by Elsevier Inc.