Single-Cell and Population-Level Analyses Using Real-Time Kinetic Labeling Couples Proliferation and Cell Death Mechanisms

Dev Cell. 2019 Oct 21;51(2):277-291.e4. doi: 10.1016/j.devcel.2019.08.016. Epub 2019 Sep 26.

Abstract

Quantifying cytostatic and cytotoxic outcomes are integral components of characterizing perturbagens used as research tools and in drug discovery pipelines. Furthermore, data-rich acquisition, coupled with robust methods for analysis, is required to properly assess the function and impact of these perturbagens. Here, we present a detailed and versatile method for single-cell and population-level analyses using real-time kinetic labeling (SPARKL). SPARKL integrates high-content live-cell imaging with automated detection and analysis of fluorescent reporters of cell death. We outline several examples of zero-handling, non-disruptive protocols for detailing cell death mechanisms and proliferation profiles. Additionally, we suggest several methods for mathematically analyzing these data to best utilize the collected kinetic data. Compared to traditional methods of detection and analysis, SPARKL is more sensitive, accurate, and high throughput while substantially eliminating sample processing and providing richer data.

Keywords: apoptosis; automated image analysis; cell death; ferroptosis; high-throughput; live-cell imaging; necroptosis; real-time assay.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / physiology*
  • Cell Death / physiology*
  • Cell Proliferation / physiology*
  • Drug Discovery
  • High-Throughput Screening Assays / methods
  • Humans
  • Kinetics