Optical coherence tomography angiography (OCTA) is a noninvasive method that enables visualization of blood flow within retinal vessels down to the size of capillaries by detecting motion contrast from moving blood cells. OCTA provides a fast and safe procedure to assess retinal microvasculature with higher contrast and resolution than conventional fluorescence angiography. The different capillary plexuses are displayed separately and their perfusion density can be quantified. Imaging capabilities such as these have led to an emerging field of clinical application for OCTA in vascular diseases such as diabetic retinopathy (DR). Evaluation of parameters such as parafoveal capillary perfusion density could be a biomarker for disease diagnosis and progression. Typical microvascular changes in DR such as capillary nonperfusion, microaneurysms, intraretinal microvascular abnormalities, and neovascularization can be reliably detected in optical coherence tomography angiograms, characterized in detail and attributed to the different capillary plexuses. Monitoring of these lesions in vivo gives potential novel insight into the pathophysiology in DR. The aim of this article is to summarize the potential applications/utility of OCTA in DR reported in the literature.
Copyright © 2019 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.