Swollen liquid crystalline mesophase assisted synthesis of GO-PANI nanocomposite as a fluorescent probe for purines

Methods Appl Fluoresc. 2019 Oct 3;7(4):045002. doi: 10.1088/2050-6120/ab47e7.

Abstract

This article focuses on the use of graphene oxide-polyaniline (GO-PANI) nanocomposite as fluorescent probe for sensing of adenine (A) and guanine (G). Swollen liquid crystalline mesophase were used for the synthesis of graphene oxide-polyaniline nanocomposite. GO-PANI nanocomposite showed enhanced fluorescent at 441 nm (ƛ excitation = 361 nm) on interaction of purines viz A and G solutions in dimethyl sulfoxide, GO exhibited quenching at 540 nm (ƛ excitation = 261 nm). The fluorescence emission spectra of GO-PANI nanocomposite and GO were recorded in the the pressence of A and G concentrations upto 1.2 × 10-4 M. The limits of detection (LOD) calculated from the concentration dependence study for GO-PANI nanocomposite and GO are 7.5 × 10-6 M and 13.4 × 10-6 M respectively. The LOD in the case of GO is identical for both A (13.0 × 10-6) and G (13.6 × 10-6 M). The binding constant (Kb) determined for GO-PANI with purines are in the range of 0.05-0.08 × 103 M-1 which is higher in the case of GO (2.42-7.52 × 103 M-1). The lifetime measurement demonstrates, an excited state interaction of GO-PANI nanocomposite and GO with purines. This is evident from the increasing lifetime from 4.3 ns to 29.2 ns for GO-PANI nanocomposite, while 17.5 ns to 37.2 ns for GO respectively. The relatively short lifetime of the GO-PANI nanocomposite in comparison with GO suggest an electronic charge dissipation of the excited state between polyaniline and graphene oxide possibly due to the alignment of polyaniline on the graphene oxide sheet. The photopysical properties of GO-PANI nanocomposite and GO observed in this study is new and has potential for application as fluorescent probe for the detection of purines.