CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific alternative splicing and contributes to the pathogenesis of myotonic dystrophy (DM), however the role of CELF6 in cancer cell proliferation is less appreciated. Here, we show that the expression of CELF6 is cell cycle regulated. The cell cycle-dependent expression of CELF6 is mediated through the ubiquitin-proteasome pathway, SCF-β-TrCP recognizes a nonphospho motif in CELF6 and regulates its proteasomal degradation. Overexpression or depletion of CELF6 modulates p21 gene expression. CELF6 binds to the 3'UTR of p21 transcript and increases its mRNA stability. Depletion of CELF6 promotes cell cycle progression, cell proliferation and colony formation whereas overexpression of CELF6 induces G1 phase arrest. The effect of CELF6 on cell proliferation is p53 and/or p21 dependent. Collectively, these data demonstrate that CELF6 might be a potential tumor suppressor, CELF6 regulates cell proliferation and cell cycle progression via modulating p21 stability.